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10.1 INTRODUCTION 

In Unit 9, you have studied the free electron theory of metals. One of the basic 
assumptions of this theory is that positively charged ions in a metal crystal do not 
influence the motion of free electrons. Obviously such an assumption over-simplifies 
the actual situation in crystalline solids including metals. Still, the theory gives good 
insight into wide range of metallic properties such as electrical conduction, heat 
capacity and thermal conductivity. Some important questions, however, remained 
unanswered. For example, free electron theory predicts that electrical conductivity is 
directly proportional to the number density of free electrons implying thereby that 
bivalent and trivalent metals should have larger electrical conductivities than those of 
monovalent metals. But this inference is not supported by experimental observations. 
Further, it also does not explain why some solids are conductors and some others are 
not. 

Most of such limitations of free electron theory were overcome by considering a more 
realistic model of solid. It was proposed that in a solid, electrons move under the 
influence of a periodic potential due to ions arranged along a periodic lattice. The 
energy spectrum of such electrons consists of allowed and forbidden energy bands and 
the theory developed on the basis of this model is called Band Theory of Solids. For 
ease in mathematical analysis, Kronig and Penney proposed that one-dimensional 
periodic potential of a crystal can be considered equivalent to a series of potential 
wells. In Sec. 10.2 you will learn the Kronig-Penney model and the consequences of 
energy bands on the motion of electrons in a solid. You will also learn how band 
theory leads to the concept of hole - a concept of utmost importance for 
understanding electrical properties of a group of solids called semiconductors. The 
existence of energy bands provides a basis to categorise solids as metal, insulator and 
semiconductor. In Unit 2, you have learnt about Brillouin zone. In Sec. 10.3, you will 
learn how is this geometrical concept useful in the study of band theory of solids. 
Determination of electron transport parameters such as charge carrier concentration is 
necessary for making devices. These parameters of metals as well as semiconductors 
can be determined on the basis of the Hall effect about which you will learn in 
Sec. 10.4. 

One of the important successes of the band theory of solids was theoretical 
understanding of semiconductors and their physical properties which you will learn in 
the next unit. 
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Objectives Band Theory of Solids 

I 
After studying this unit, you should be able to: 

list the limitations of the free electron theory; 
state Bloch theorem; 
discuss the results of Kronig-Penney model and formation of energy bands; 

8 explain how Kronig-Penney model describes the motion of electrons in metals 
and provides the basis for categorisation of solids; 
relate Brillouin zone to energy bands; and 

8 explain the significance of Hall effect experiment with respect to band theory and 
obtain an expression for Hall coefficient. 

10.2 AN ELECTRON IN A PERIODIC POTENTIAL 
i You may recall from Unit 9 that, according to the free electron theory, a metal crystal 

can be considered analogous to an empty box containing free electrons. The lattice 
ions do not influence the motion of electrons in any way. That is, electrons move 

i completely randomly all around the volume of the crystal. However, this description 
is not enough to understand various properties of solids. From Unit 9, you will recall 
that the separation between neighbouring atoms in a metal is less than the sum of their 
radii and it is reasonable to assume that orbitals of electrons belonging to these atoms 
overlap. As a results, electrons find themselves in potential field of lattice ions. That 
is, electrons experience a potential field. 

To appreciate the nature of potential field experienced by electrons in a solid, let us 
first understand the nature of potential field of an isolated positively charged ion for 
an electron. Refer to Fig. 10.1 a which depicts the variation of potential energy of a 
conduction electron with respect to its separation from a positively charged ion. The 
negative value of the potential energy indicates that the force between the ion and 
electron is attractive. Fig. 10.1 b shows the potential energy curve for an electron 
under the influence of two ions. Note that the resultant curve in between the ions gets 
modified. Now, recall that ions in a crystalline solid are arranged along a periodic 
lattice. Therefore, in a one-dimensional (1-D) periodic crystal lattice, the potential 
energy of electron will be due to a series of equidistant ions as shown in Fig.lO.1~. 
The potential experienced by an electron in such an arrangement of ions is periodic in 
nature. 

Fig.lO.1: Potential energy of an electron due to a) an ion; b) two ions separated by a distance a; 
and c) series of equidistant ions representing I-D periodic crystal 

In the previous unit we solved the Schrodinger equation to investigate the behaviour 
of free electrons in a metal where it was assumed that ions do not influence the motion 
of electrons, i.e., electrons move in a constant (zero) potential. To understand the 
behaviour of electrons in a periodic potential, we should solve the same equation 



Electronic Properties incorporating periodic nature of potential. The 1-D Schrodinger equation for an 
electron in a periodic potential is given by 

where V (x) is the periodic potential experienced by an electron in the crystal and ~ ( x )  
and E are respectively the wavefunction and the energy of an electron. 
For simplicity we have assumed a 1-D periodic lattice with lattice constant a. Thus, 
the periodicity of potential V (x) can be expressed as 

Eq. (10.2) means that the V(x+a)=V(x) .  (1 0.2) 
value of potential will be 
same at any two points 
along the x-axis separated To proceed further, we must know how to solve Eq. (10.1) with this kind of potential. 

by distance the This problem was first tackled by F. Bloch who showed that the general solution of 
constant. This is because of Schrlidinger equation with a periodic potential is 
the perlodic arrangement of 
crystal ions along x-axis. 

w (x) = uk ( 4  e 
f l k x  (10.3) I 

where uk(x) is a periodic function with periodicity of the lattice: 1 

In Eq. (10.3), k = - is the wave number associated with deBroglie wavelength 3t ( 3 
of electron. The wavefunction given by Eq. (10.3) is called Bloch function and the 
result that ~ ( x )  can be expressed as aplane wave modulated by aperiodicfinction is , 
called the Bloch theorem. Further, the Bloch function is modulated by the periodicity 
of the lattice because 

= W(X) e 
f ika (10.4) 

using Eqs. (10.3) and (10.3a). 

Without proving the Bloch theorem, we shall use its results to investigate the effect of 
periodic potential on the energy of electrons in a solid. However, for potential field 
shown in Fig. lO.lc, it is difficult to solve the Schrodinger equation even with the help 
of Bloch theorem. A way out of this problem was suggested by Kronig and Penney. 
They proposed a simplified version of the actual potential experienced by an electron 
and solved the Schrijdinger equation. You will learn the details of Kronig-Penney 
model now. 

10.2.1 Kronig-Penney Model 

Kronig and Penney proposed that the potential experienced by an electron in a 1-D 
crystalline solid can be represented by a periodic array of potential wells as shown in 
Fig. 10.2. 
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Fig.10.2: Potential well representation of the periodic potential experienced by an electron due to 
ions in a 1-D crystal of solid 

The nature of potential well representation can be understood by comparing Fig.(l0.2) 
with Fig.(lO. lc) which represents potential of an electron in a I -D crystal. The 
characteristic features of Fig.(lO.lc) are: 

a) when electron is in the vicinity of an ion, its potential energy has a finite negative 
value (say, - Yo); and 

b) when electron is away from an ion (that is, when it is between two ions, its 
potential energy is zero. 

You know that taking zero of potential energy is a matter of convenience; important 

i 
thing is the relative value of potential energy between two point. In this context, 
Fig. (10.1~) shows that when an electron is in the vicinity of an ion, potential energy is 
lower than its value when electron is in-between the ions. This feature must be 

I incorporated in any representation of the potential of an electron in a periodic crystal. 

I Now, refer to Fig.lO.2. First of all, note that the origin of coordinate system has been 
shifted to - Vo along the potential axis. Each potential well (regions I) represents the 

1 potential of an electron in the vicinity of an ion. Each of these regions is of width a 

1 and the value of potential is zero. Two consecutive potential wells are separated by a 
1 distance b (regions 11) and the value of the potential in each of these regions is Vo. 

Region 11 in Fig. 10.2 corresponds to the situation when electron is in-between the 
ions. Thus, in Kronig-Penney model, we find that when electron is in the vicinity of 
an ion, its potential is lower than when it is in-between ions. There is complete 
correspondence between electron potential in a periodic crystal (Fig. 10. lc) and its 
potential wells representation (Fig. 10.2) except for the fact that, in the latter, the 
lattice constant is (a + b) instead of a. The potential of electron for the two regions 
can, therefore, be expressed as 

Vo for region I1 (-6 < x < 0) 

Thus, for the Kronig-Penney model, we write Schrodinger equation for two distinct 
regions separately: 
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Now, let us assume that the energy E of electron is less than the height of the potential 
barrier, Vo. Note that this assumption is quite justified because at room temperature, 
electrons do not acquire sufficient thermal energy to escape from the crystal. Next, we 
introduce two real quantities a and p by defining 

and 
2m(Vo - E) p2 = 

A 

Since Vo> E, p will be a positive quantity. In terms of a and P, Eqs. (10.6) and (10.7) 
respectively take the form 

and 

According to Bloch theorem, the solution of these differential equations is given by 

w (XI =uk(x)e 
i k x  (10.12) 

You will not be asked To solve Eqs. (1 0.10) and (1 0.1 I), we should use the expression for ~ ( x )  as given by 
questions in examination on Eq. (1 0.12) and apply appropriate boundary conditions. However, this involves 
the contents presented in the complex mathematics. For details, see Appendix at the end of the unit. Here it is 
Appendix. sufficient to quote the result since we are interested in the physical significance of the 

result obtained by solving these equations. It is found that solutions of these equations 
can exist only if the following condition is satisfied: 

p2 - a2 
sinh p b sin aa + cosh pb cos aa = cos k (a  + b). (1 0.13) 

2 4  

To simplify above expression, Kronig-Penney made an assumption regarding the 
nature of potential encountered by electrons: as Vo + m, b + 0 in such a way that Vo 
times by which represents the area of the potential barrier, is finite. Physically, it 
means that the electrons are not completely free. Further, this assumption implies that 

sinh pb + pb 

and 
cosh Pb + 1. 

Then Eq. (1 0.13) reduces to 

p2 - a2 
b s i n a a + c o s a a  = cos ka. 

2 a  

42 



Further, by combining Eqs. (10.8) and (10.9), we can write (see margin remark) Band Theory of Solids 

where 

Since Vob represents the strength of potential barrier for electron (Fig. l0.2), 
Since Vo >> E, we can neglect the Eq. (10.16) implies that P is a measure of the strength of attraction between electron second term the brackets to 

and an ion. In other words, the value of P is a measure of how strongly an electron is obtain 
bound in a crystal. 

Using the result contained in Eq. (10.15) in Eq. (10.14), we get 

sin a a 
P- + cos a a  = cos k a  

a a  

You may like to know: What does Eq. (10.17) signify? You should realise that the 
condition expressed by Eq. (10.1 7) must be satisfied if the wavefunction y (given by 
Eq. (10.12)) is to represent an electron in a periodic potential. Further, it can also be 
used for obtaining useful information about the energy spectrum of electrons. Now, 
before proceeding further, you should answer an SAQ to fix these ideas. 

SAQ 1 

a) What is the origin of the periodic potential field experienced by electrons in a Spend 
crystalline solid? 3 min. 

b) If the wavefunction y(x) is to represent an electron in a crystalline solid, what 
should be its nature? 

To further appreciate the significance of Eq. (1 0.1 7) for energy of an electron, it is 
sin aa 1 37t 

instructive to plot + cos a a  vs, a a .  Such a plot for P = - is shown in 
2 

Fig.(l0.3). Note from Eq. (1 0.17) that irrespective of the value of ka, the right hand 
side can take values between +I and -1 only. This imposes limits on values the LHS: 

sin a a  
only those values of are allowed which are in the range + 1 to -1 . 

These limits are shown by the horizontal solid lines parallel to aa-axis in Fig. (10.3). 

For plot shown in Fig.lO.3, 
value of aa has been taken 
as multiples of x because it 
simplifies the tabulation of 
data as well as gives better 
insight about the energy 
spectrum of electron. 

aa for P = 3 ~ 1 2  
I 



I Electronic Properties Now, before we discuss inferences flowing from the plot in Fig.(] 0.3), you should 
convince yourself about its nature by solving the following SAQ. 

1 SAQ 2 

Spend Tabulate values of -sin aa + cos aa for different values of a a  between 0 and 3x 
5 min. [a: 1 

3x 
to show allowed and forbidden values of LHS of Eq. (1 0.17). Take P = - . 

2 

57t 
Solving SAQ 2, you must have noted that for some value of a a ,  such as 0 and -, 

4 

aa  + cos aa is greater than 1 1 / and cannot be equal to cos ka, RHS 1 
of Eq. (I 0.17). 

From Fig. 10.3, you will also note that: 

For certain values of aa ,  the curve crosses &1 along 

implies that the corresponding energy values are not permissible to electrons. 
Therefore, we can conclude that the energy spectrum of electron consists of 
groups or bands of energy levels comprising allowed energy bands and 
forbidden energy bands. 

As the value of aa and hence the energy of an electron increases, the width of 
the allowed energy bands increases. This is because the value of the first term in 
LHS of Eq. (10.17) decreases as a a  increases. You should convince yourself 
about this conclusion by solving the following SAQ. 

SAQ 3 
Spend 
5 min. Using Eq. (10.17), show that the width of allowed energy bands increases as energy of 

electron is increased. 

Fig. 10.3 has been drawn for a fixed value of P (= 3x12). You may ask: Does the 
value of P affect band width? And if so, how? From Eq. (10.17), it can be seen 
that as P increases, the width of a particular allowed band decreases. You should , 
convince yourself about this statement by calculating the value of 

--sin a a  + cosaa for the first allowed band for three increasing 

3x 5x 7x 
values of P such as - , - and - . Since P is a measure of the strength of 

2 2 2 
potential barrier, larger values of P implies that an electron is strongly bound to its 
parent atom. That is, condition that P is large represents the physical situation that 
an electron is in the constant potential; P small implies that electron is a 
completely free particle. It is instructive to obtain expressions for energy of an 
electron for these two cases. You will learn to do so now. 

i) P + co : In this case, Eq. (10.17) can be rewritten as 

a a ( c o s k a - c o s a a )  
s i n a a =  

P 

For P + co, sin a a  + 0. This implies that 
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Comparing this expression for a2 with that given by Eq. (10.8), we obtain 

Do you recognise this expression? It is same as Eq. (9.13) of Unit 9 which 
gives energy of an electron moving in a constant potential. This means that 
the condition P + co leads us to the results of Sommerfeld free electron 
model. It is understandable because very large value of P implies that the 
strength of the potential barrier (P =rob) is so strong that electron cannot 
escape from an isolated potential well. The energy spectrum for P + c~ is 
shown in the right portion of Fig. 10.4. Note that it consists of discrete energy 
levels which is consistent with the energy spectrum of electron as per the 
Sommerfeld model. Thus, we may conclude that the Sommerfeld model is a 
special case of the Kronig-Penney model, that is, fhe band theory of solids. 

ii) P+ 0: In this case the first term on the left hand side of Eq. (10.17) will 
vanish and the expression reduces to 

cos aa = cos ka. 

From this equality, it readily follows that 

Again, comparing this value of a* with that given in Eq. (10.8), we get 

Fig.lO.4: Energy spectrum of 
electrons for 
different strengths of 
the potential field in 
a crystalline solid 

(10.19) 

wherep = A k is the momentum of electron. 

This expression gives the energy of a free electron and all energies are 
allowed as shown in the left portion of Fig. 10.4. This situation corresponds to 
the Drude-Lorentz model. Thus, Drude-Lorentz and Sommerfeld models are 
particular cases of Kronig-Penney model. You would indeed agree that this 
feature of band theory is a significant improvement over the free electron 
theory. 

Yet another important conclusion relates to dispersion relation (E vs. k curve) for 
electrons in a periodic potential. It is obvious from Eq. (1 0.17) that for a given 
value of aa  (and hence energy E), the RHS can take only one value. But, cosine 
function is an even periodic function. Therefore, cos ka will have the same value 
for f ka as well as for f ka f 2nrc; n = 1,2,3,. .. . It suggests that the energy of an 
electron is an even periodic function of k with period 2rc. Further, to obtain 
dispersion curve, you should note that discontinuities in the energy spectrum will 



Electronic Properties c o s k a =  f 1 = c o s ( f  nsc) 

or 

k a = f  nsc. 

That is, energy spectrum will be discontinuous at 

n = f l ,  +2, f 3, ... (1 0.20) 

Let us pause for a while and ask: What does this result tell us? It suggests that the 

(a) (b) 

Fig.10.5: a )  Plot of energy against wave number of an electron in a 1 -D crystal; and 
b)  corresponding energy bands 

Energy States in a Band 

At this point, you may ask: Are the energy states in an allowed energy band 
v ( X  + L )  = U k ( X  + L ) ~ ~ ( X + L )  = v ( X )  continuous? If not, why? It is observed that though very closely separated, the energy 

levels in a band are discrete. To know the number of energy states in a band, let us 

:. uk(x)elk = uk(x  + ~ ) e ' ~ ( ' + ~ )  
consider a 1-D crystal of length L having N unit cells. L and N are connected through 
the relation 

L = N ( a + b )  

(': uk (x )  = u k ( x +  L) )  
where (a + b) is the distance between two neighbouring ions. The cyclic boundary 

This implies that condition on the wavefunction ~ ( x )  is 

w (x + L) = W (XI. (10.21) 
and it holds for 

k L a 2 n n ;  n = 0,f 1, f 2 , s . .  But ~ ( x )  is Bloch function given by Eq. (10.3) as 

w ( x ) = u ~ ( x )  e i k x .  

On applying the boundary condition (Eq. (10.21)) on ~ ( x ) ,  you will obtain (see 
margin remark) 
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What does this result signify? It indicates that k can take discrete set of values 
0, +2xIL, + 4n:lL, + 6xlL, . . . ., etc, and, therefore, energy E is quantized. If length L of 
the I-D crystal is large, separation between energy levels in a band becomes small, 
and they form a quasi-continuous band. For macroscopic specimens, this is indeed the 
case. Now suppose we take an arbitratry interval dk in k-space and wish to know the 
number of energy states whose k-values lie in this interval. Under the assumption that 
L is large and energy levels in a band is quasi-continuous, we can write the number of 
possible energy states in the interval dk as 

Hence, total number of energy states in the first allowed energy band (for k values in 
range - nla to + xla) can be obtained by integrating Eq. (10.23); 

Thus, 

If the separation between the potential wells (Fig.] 0.2) is very-very small, that is, You should note that width of 
each band is equal to 2da. 

b = 0, we can write (a + b) = a. Thus, we get Therefore, the result obtained 

N ( a + b ) = N a = L  

Comparing Eqs. (10.24) and (10.25), we obtain 

for first allowed band has been 
(1 0.25) generalised for all allowed 

bands in a crystal. 

That is, the total number of energy states (n) for an electron in an allowed band 
of a crystalline solid is equal to the number of unit cells. Further, since each energy 
state can accommodate two electrons - one with spin up and another with spin 
down - maximum number of electrons which can occupy an allowed energy band is 
2N. So, when the number of electrons in an energy band is equal to twice the number 
of unit cells in the crystal, the band is completelyfilled. This conclusion has far 
reaching consequences. You will learn later in this unit that it enables us to distinguish 
metal from insulator and semiconductor. 

So far, you have studied about the allowed and forbidden energy bands for an electron 
in the periodic potential of a crystalline solid. You can also explain how many 
electrons can occupy an allowed energy band and at what values of the wave number 
disconti~iuity would occur in the energy spectrum. In addition, the band theory also 
provides a completely new perspective on some of the physical parameters such as 
velocity and Inass of an electron in a crystalline solid. You will learn it now. 

10.2.2 Energy Bands and Motion of Electrons 

You may recall from Unit 9 that energy of free electrons is proportional to the square 
of the wave number. But the dispersion curve (E vs. k curve) predicted by the band 



Electronic Properties theory do not show parabolic relationship between E and k, particularly near the 
boundaries of bands. You may note in Fig. 10.5 that at the boundaries, the E vs. k 
curve deviates from the parabolic nature as predicted by free electron theory. This 
deviation has important implications for the microscopic parameters of electrons. In 
particular, the velocity and mass of an electron changes significantly. Let us see how. 

Velocity 

You know that the group velocity of a wave is defined as 

where o and k respectively denote the angular frequency and wave number of the 
wave. In this case we shall consider de Broglie wave associated with an electron. 

1 
I Since energy of electron E = ha, the expression for group velocity in terms of E takes 

the form 

d o  d o  dE 1 dE 
(a) v = - = -  -=-- (1 0.26) 

dk dE'dk  A dk 

I I 
I 

. d o  1 
I b" I since - = -. 

dE A 

(b) For a completely free electron, E = A2 k2 I 2m. Using this relation in Eq. (10.26) we 
find that 

v = ~ ~ [ E ) = ~ = ~ .  (1 0.27) 
A dk 2m m m 

(c) This result shows that the velocity of a completely free electron is a linear function of 
k. To see how this relation is influenced by the band theory, let us consider the region 

I 
I bound by - nla < k < nla of the E vs. k curve (Fig. 10.5). For this region, the E vs. k (1 1 r-1 and v vs. k curves for an electron are shown in Figs. l0.6a and b respectively. 

' On comparing these figures, you will notice that 
-n / a 0 n / a  

Flg.10.6: Variation of a) energy; 
b) velocity; and c) 
mass of an electron 
with respect to its 
wave number in the 
first allowed energy 
hand 

the velocity of an electron becomes zero for k = f nla of the band. This is 
understandable because at these points, the energy is independent of the wave 
number, that is, (dE/dk) = 0. 

as the energy increases from k = 0, the velocity increases atfirst linearly, attains 
a maximum value for k = ko and then decreases to zero at top of the band. The 
point at which k = ko is called point of inflection of the E vs. k curve. 

These features of the velocity of electrons in a crystalline solid are unique predictions 
of the band theory. As per the free electron theory, velocity of an electron increases as 
second power of energy. 

Effective Mass 

You know that in an electric field, electrons experience a force and get accelerated; 
stronger the applied field, higher is the acceleration. You may now ask the question: 
Does an electron in a crystalline solid also behave similarly? It is not so because, as 
you have seen above, the v vs. k curve of an electron in a solid is different from that of 
a completely free electron. This is because the (effective) mass of an electron in a 
crystalline solidplaced in an electric field is different from its free mass. To 
appreciate the concept of effective mass, let us consider an electron of mass m moving 



under the influence of a periodic potential. The velocity of such an electron is given 
by Eq. (10.26). Thus, the acceleration can be written as / 

Using the E vs. k curve, we can obtain (d 2 ~ l d k  2 ) .  To find variation of the wave 

number with time, let us assume that the electric field E acts on an electron for time dt 
and during this time interval, it acquires a velocity v. Thus, the work done on the 
electron increases its kinetic energy: 

I dE = ( e  E )  x ( v  dt) 

By re-arranging terms, we obtain 

Using this result in Eq. (10.28), we get 

1 d 2 ~  e c  

a = (X) [z) (T) * 

On inverting the expression, we find that 

If we compare this result with the equation of motion, force = mass x acceleration, we 
find that the effective mass, m* of an electron in a crystalline solid placed in an' 
electric field is 

Band T d r y  eC. Solids 

According to free electron 
theory, the energy of a 
completely free electron is 
given by Eq. (10.19): 

Thus, 
dE h2k ' -=- 

dk m 

d 2 ~  t i 2  
---. = - Note that effective mass of an electron in a crystalline solid depends on the variation 
dk2 m 

of energy with the wave number. For example, if you use Eq. (10.19) which expresses 
relation between energy and wave number of a completely free electron, you will find Substituting this expression for 

that m* is equal to m, the rest mass of the electron. The effective mass comes into play (d ' ~ l d k ' )  in Eq.  (10.30), we 
pet, 

because we assume that electron is acted upon by the external field & only. h2 f i2  
m = =-=m. 

The variation of effective mass with wave number is shown Fig.10.6~. You may note 
that in the lower half of the energy band, m' is positive. However, in the upper half of 
the band, i.e., beyond the point of inflection, m is negative: the electron has a 
negative effective mass! You may ask: What is the physical significance of the 

P 49 



Electronic Properties negative effective mass? You should note that, beyond the point of inflection, velocity 
of electron decreases as k increases. That is, the electric field which accelerates the 
electron for k < ko, decelerates it for k > h. It is as if the deceleration is caused by the 
negative effective mass of the electron. In other words, beyond the point of inflection, 
the electron behaves as ifit is apositively chargedparticle (called hole)! The concept 
of hole - electron with negative effective mass - has made significant contribution in 
our understanding about semiconductors. You will study about these in Unit 11. 
Before proceeding further, you should solve the following SAQ. 

SAQ 4 j 

The energy of an electron in a crystalline solid is related to the wave number k by the i 

relation 1 
Spend 

E =  
10 h2k2 

3 min. m 

Calculate its velocity and effective mass. 

10.2.3 Classification of Solids in Metal, Insulator and Semiconductor 

You must have observed that electric appliances have ebonite handles but aluminium 
or steel base or body. In a physics laboratory, copper wires are used for electrical 
connections and tungsten wires are used in resistance boxes and rheostats. In a 
transistor, germanium, silicon or their alloys are used. This is because of the varied 
responses of these materials to electric field. The ability of a solid to conduct electric 
current may be explained in terms of availability of free electrons in it. It means that 
free electrons are not readily available in insulators and pure semiconductors. To 

t ' address this question, let us once again consider the energy spectrum of electrons in a 

I I '~nstalline solid consisting of allowed and forbidden energy bands. 

Refer to Fig.lO.7 which shows the lowest allowed band filled only upto a given value, 
say kl (< xla) of k. Let us define a parameterfk, which gives the extent to which an 
electron with a given k is free to move under the influence of an applied field, as: 

a 
(10.31) 

"led You would definitely like to know: What doesfk signify? Note from Eq. (10.31) that if 
lowest allowed 
band of a solid the effective mass of an electron in a band is large,& will be small. In this situation, 

electron is relatively heavy and hence may not participate in electrical conduction at 
low field values. That is, when an electricfield is applied, the electrical conduction 
will depend upon the number of effectivelypee electrons rather than on the total 
number o f f r e  electrons in a band. Further, we can express the number of effectively 
free electrons as 

where the summation extends over all the occupied energy states of the band. If 
separation between the energy levels is small, we can replace summation over discrete 
levels by a continuous distribution and write 

Using Eqs. (10.23) and (10.31) we get 



and 

kl Band Theory of Solids . 

N eff == ~[$]dk 
n h 2  , 
2mL dE =-[-I (10.33) 
n h 2  dk k=k, 

The factor of 2 has been included because each energy state can accommodate two 
electrons. For a completely filled band, we have 

k = f  nrc la ;  n = l ,  2, 3... 

dE nn 
- = O  atk=+_-. 
dk a 

So, Eq. (10.33) reduces to 

Neff = 0 (10.34) 

That is, in a completely filled band, the effective number of free electrons is zero. 
Physically, you can appreciate this result by referring to v vs. k diagram in Fig.lO.6b. 
Corresponding to any velocity v of an electron, there is another electron with velocity 
- v so that the net velocity in the energy band is zero. Further, Eq. (10.33) shows that 
Nen will be maximum for k value where dEldk has the maximum. From Fig. (10.6), it 
is evident that (dEldk) is maximum at the point of inflection. The point a f  inflection 
refers to nearly half-filled band. Therefore, the effective number of free electrons in a 
band will be maximum if it is filled upto this point. 

Now, refer to Fig.lO.8a. It shows allowed and forbidden energy bands. You will note 
that some of the lower energy kinds are completely filled and Nen is zero. The highest 
partially or completely filled band is known as valence band and the next allowed 
unfilled band is known as conduction band. Note that only these two bands are of  
interest to us. It is because all other bands remain unaffected at ordinary temperatures 
and electrical fields; you should, however, keep in mind that other bands also exist. 

'on the basis of these energy band diagrams we differentiate between metal, insulator 
and semiconductor. 

Fig.10.8: Different configurations of energy spectrum 
* , 

Suppose that thepth allowed band is partially filled and the @-l)'h and @ +l)th bands 
are, respectively completely filled and completely empty. 



Electronic Properties According to the band theory, thepth allowed band consists of a large number of 
energy levels. Since this band is partially filled, there are empty energy levels in 
which electrons can be accommodated. The energy difference between the levels 
within a band is very small. Electrons in filled levels can move to empty levels within 
the band even if a very small amount of energy is supplied to them. Thus, when an 
electric field is applied to a solid specimen having this type of energy spectrum, the 
electrons in the partially filled band will gain energy, move to empty higher energy 
levels in the same band and are, therefore, available for electrical conduction. Such 
solids are called metals. The partially filled band is known as the conduction band. 

Now let us consider another type of energy spectrum depicted in Fig.lO.8b. In this 
case, thepth band is completely filled but the (p +l)th band is completely empty. The 
energy gap (the forbidden band) between these two bands is, say E,. Electrons in the 
pt" band can move to the empty (p  + l)th band only when they receive energy more 
than or equal to E,. Therefore, if the applied electric field is not strong enough to 
supply this much energy, electrical conduction will not take place. The energy gained 
by electrons at ordinarily applied electric fields is much less than E,. Thus, solids with 
energy spectrum as shown in Fig.lO.8b correspond to insulators. 

Lastly, let us consider the third type of energy spectrum, which is shown in Fig.lO.8~. 
Comparing this spectrum with the one shown in Fig.l0.8b, you will observe that the 
only difference between the two lies in the value of the energy gap E,. You may now 
like to know: How does the value of E, influence the behaviour of solids? At absolute 
zero, solids with energy spectrum as in Fig.lO.8~ also behave as insulators. But, at 
temperature T, electrons in the valence band gain energy equal to kBTand if kBT > E,, 
it is quite possible that some electrons in the valence band may get excited to the 
conduction band. Therefore, at temperatures above absolute zero, the energy spectrum 
shown in Fig. 1 0 . 8 ~  will contain empty energy levels at the top of the valence band as 
well as filled energy levels at the bottom of the conduction band. The availability of 
empty levels in the allowed bands facilitates electrical conduction in such solid. Solids 
with small energy gap between their valence and conduction bands tend to conduct 
electricity as temperature is raised from zero. Such solids are called semiconductors. 
Note that at T = 0 K, there is no difference between an insulator and a 
semiconductor in so far as the electrical conduction is concerned. 

On the basis of above discussions, we can understand a few experimental observations 
on electrical conduction in metals. Recall from Unit 9 that conductivity of a metal is 
proportional to the concentration of electrons. It implies that divalent and trivalent 
metals should have larger values of conductivity than that of monovalent metals. This 
prediction does not conform to experimental observation. The explanation of this 
variance is provided by band theory which predicts that feasibility of electrical 
conduction is guided by a parameter called number of effectively free electrons (NeE) 
available for electrical conduction and not on the total number of valence (free) 
electrons. From Eq. (10.33), it is obvious that Neff depends on the nature of energy 
bands and which is more or less same for all metals irrespective of their valencies and 
hence conductivities of metals are of the same order of magnitude. 

You now know that Kronig-Penney model introduced the concept of allowed and 
forbidden energy bands which affect the dynamical behaviour of electrons 
significantly. One of the salient features of band theory is that it provides a basis for 
constructing Brillouin zone pattern of the crystals and thereby helps in the 
determination of crystal structure. In the following, you will learn how band theory 
predicts the Brillouin zones. 

10.3 ENERGY BANDS AND BRILLOUIN ZONES 

Refer to Fig.10.5 again. You will note that discontinuities in the energy spectrum of 1 
electrons in a crystalline solid occurs at the k values given by i I 



so that 

2a = ti h. (10.35) You may recall from Unit 4 
that Brillouin zone 

If a denotes the separation between the planes normal to the direction of propagation boundaries are the reflecting 
of electron wave, then Eq. (1 0.35) represents Bragg's law (2d sin 8 = nh) for electrons planes forX-rays. Thus, we 
for 8 = n/2. The similarity between discontinuity in energy spectrum and Bragg's can obtain the X-ray 
diffraction condition is a consequence of the wave nature of electron. Therefore, difiaction pattern and 

Eq. (10.35) implies that for this relation between a and h, electrons are reflected back crystal structure of a solid if 
we know its Brillouin zone and cannot propagate in the crystal giving rise to the discontinuity in the E vs.k curve. 

7c n 
In view of this, we can say that the region bound between k = -- and k = + - on the 

a a 
n 

E vs. k curve (Fig. 10.4) represents the first Brillouin zone. The regions between - - 
a 

271 71 2n 
and - - and - and - represents other Brillouin zone and so on. These values of 

a a a 
k represent the Brillouin zone boundaries because the corresponding energy values are 
not permissible to electrons in a periodic potential. Fig.lO.9 shows a few Brillouin 
zones in one dimension. 

Fig.10.9: First few Brillouin zones for a I-D crystal 

In order to construct Brillouin zone patterns using the results of band theory, let us 
consider the motion of an electron in a 2-D square crystal. It is convenient to use the 
wave numbers kx and k, as coordinate axes for the construction of Brillouin zones. 
The space defined by these axes is called k-space, which is equivalent to reciprocal 
space because distances in k-space are reciprocal to the distances in crystal. The 
condition for energy discontinuity is given by Eq. (10.20): 

, , ,  
a 

Thus, the boundaries of the first Brillouin zone for 2-D square lattice crystal will be I 

where n, and n2 are integers corresponding to kx and k, axes. I 



Electronic Properties Thus, to draw the first zone, we must choose nl and n2 such that it leads to 
X 

k.. + k.. = f -. This is ~ossible for two different sets of values of n~ and n?: 

n l = _ + l ,  and nz=0 .  

With these values of nl  and n?, Eq. (1 0.36) gives 

ii) nl =Oandn2=f  I,weget, 

The first Brillouin zone with these values of the coordinates k, and k, will be a square 
PQRS as shown in Fig. 10.10. 

Fig.lO.lO: First Brillouin zone for a 2-D square lattice crystal 

In order to fix your ideas about Brillouin zones, you should answer an SAQ. 

Spend SAQ 5 
4 min. 

Sketch the second Brillouin zone for a 2-D sauare crvstal. 

Solving SAQ 5, you have seen that the second Brillouin zone of a 2-D crystal lattice 
consists of four separate parts. However, note that the total area of the second zone is 
equal to that of the first Brillouin zone. Further, it is also possible to construct 
Brillouin zones for real 3-D crystal lattices. We do not include it in this unit to avoid 
mathematical complexities. You may recallfrom Unit 3 thatjrst  Brillouin zone can 
be taken as a unit cell of a crystal lattice in reciprocal space. Therefore, band theory 
calculations leading to construction of Brillouin zones provide an analytical tool to 
determine crystal structure of a solid. 

In Sec. 10.2, you learnt that the effective mass of an electron in a band acquires 
negative value if it is near the top of the band, that is, if its wave number is greater ' 

than ko - wave number at the point of inflection. An electron with negative effective 
mass behaves like a positively charged particle having same amount of charge. You 
may like to know: Is there any experiment to check this prediction of band theory? 
The Hall effect measurement enables us to determine the sign of charge carriers and 
check this prediction. Further, the study of Hall effect is also used for determining 
carrier concentration in solids which is of crucial importance for designing solid state 
devices. In addition, this experiment can be used for determining whether an extrinsic 



semiconductor is n-type orp-type. However, in the following, we confine our 
discussion of Hall effect for metals only. 

10.4 HALL EFFECT 

In Hall effect experiment, an electric field Ex is applied to a rectangular parallelepiped 
shaped metallic specimen. We take this as the positive x-axis. Let the current density 
due to this field be j, (Fig. 10.1 la). A magnetic field B, is applied normal to the 
specimen. We take this as the positive z-direction. 

.(a) 

Fig.lO.11: Schematic diagram of Hall effect experiment 

You know from the course on Electric and Magnetic Phenomena (PHE-07) that a 
moving charge experiences a force due to the applied magnetic field. This force acts 
in a direction perpendicular to both the applied magnetic field and the direction of 
motion of the charge and deflects it. For the directions of magnetic field and moving 
charges (since j,  is along positive x direction, motion of electrons will be along 
negative x direction), this deflection will be along the negative y-direction as shown in 
Fig. 10.1 lb. Electrons, however, cannot move very far and accumulate on one surface, 
A of the specimen (Fig. 10.1 lb). On the opposite surface, B, positive charges 
(deficiency of electrons) begins to accumulate simultaneously. Due to accumulation of 
opposite charges on the opposite surfaces of the specimen, an electric field Ey 
develops along negative y-direction which opposes further accumulation of electrons 
on the lower surface. This field is called Hall field and, in equilibrium, it counter- 
balances the force on moving electrons due to magnetic field. 

To obtain an expression for the Hall field, you should recall that the force experienced 
by a charge q moving with a velocity v in a magnetic field B is given by 

F = q ( v x B )  (10.37) 

To appreciate the direction of this force, note that if the charge carrier is electron, q 
becomes - e in Eq. (10.37) and direction of F is opposite to (v x B). However, for the 
current flowing along positive x-direction, the direction of v for electron is along 
negative x-direction. So, (v x B) is along positive y-direction and, therefore, F is along 
negative y-direction. So, for electrons as charge carriers, we can write 

Fy=-ev,B,  

In steady state, Fy is balanced by the force (- e EY) due to Hall field. Thus, we obtain 

-eEy=-ev ,B,  
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This relation gives the Hall field and can be written in terms of measurable quantities 
if we use the expression for current density along the x-axis: 

where n is concentration of electrons. 

Substituting this expression for v, in Eq. (10.38), we get 

Table 10.1: Hall co-efficient of 
some metals at room Or 
temperature 

Metals RH x lo-'' 
(vm3 A-' ~es la- ' )  

Lithium - 1.70 
(Li) 

Copper - 0.55 
(Cu) 

Zinc (Zn) + 0.33 

Aluminium - 0.30 
(All 

Berelium + 2.70 
(Be) 

Sodium 
(Na) 

where RH is called Hall codefficient or Hall constant. You may note that the Hall 
field developed in metallic conductor is proportional to both: current flowing in 
conductor and the magnetic field in which it is placed. 

This is a very useful result because it shows that Hall coefficient depends only on 
concentration of electrons. Measurement of RH is, in fact, a standard technique for 
experimental determination of electron concentration in metals. In addition, it also 
provides a test of the free electron theory of metals which assumes that valence 
electrons become free electrons participating in transport phenomenon in metals. 
Experimental values of the Hall co-efficients of some metals is given in Table 10.1. 
Note that the values of RH for Zn and Be are positive. From Eq. (10.40), it is obvious 
that positive RH means electrical conduction by positively charged carriers. 
'This is an interesting observation because free electron theory assumes that electrons 
are the only charge carriers in metals! 

The positive Hall co-efficient can be explained on the basis of band theory. The band 
structure of these metals is such that the conduction bands are more than half-filled. 
Thus, electrons at the top half of the band participate in electrical conduction. These 
electrons have negative effective mass and they behave as positively charged carriers. 
This feature of the Hall coefficient - its sign depends on the sign of the charge 
carriers - becomes very useful in the study of semiconductors where both types of 
charge carriers - electrons and holes - play important role simultaneously. 

Now let us summarise what you have learnt in this unit. 

10.5 SUMMARY 

An electron in a crystalline solid move under the influence of a periodic potential 
due to ions. According to Kronig-Penney model, the periodic potential due to 
ions in a 1-D crystal can be represented by a series of equidistant potential wells. 



According to Bloch theorem, the wavefunction representing an electron in a Band Theory of Sol 

periodic potential can be expressed as a plane wave modulated by a periodic 
function; that is, 

~ ( x )  = uk (x) . e* lkr 

where uk (x) = uk (X + a); a being the lattice constant. 

Solutions of the Schrodinger equation for an electron in a periodic potential can 
exist only if the following relation holds: 

sin a a 
P- + cos a a  = cos k a  

a a  

ma 
where P = -T Vob is a measure of the strength of attraction between electron and 

A 
ion. This relation shows that a) energy spectrum of an electron consists of allowed 
and forbidden energy bands; b) as energy of electron increases, width of allowed 

I 
bands increases; and c) as P increases, width of the allowed bands decreases. 

Free electron theory of metals proposed by Drude-Lorentz and ~ommerfeld are 
particular cases of band theory of solids. ~ h e s e  two particulapases respectively 
correspond to electron as a completely free particle and in a constant potential 
field. 

The dispersion relation of an electron in a periodic potential shows that the 
discontinuities in energy spectrum occurs at the Brillouin zone boundaries i.e. at 
k = f nnla; n = 1,2,3, . . . 

Number of energy states in an allowed band in a crystalline specimen is equal to 
the number of unit cells in it. This means that total number of electrons that can be 
accommodated in a band is twice the number of unit cells in a specimen. 

According to band theory, the velocity and mass of an electron in a crystalline 
solid is significantly different from those of a free electron. Velocity of an 
electron near the top of the band decreases with increasing energy. Similarly, 
mass of electron is different from its rest mass. The (effective) mass of an 
electron in a crystalline solid is given by 

1 

m = 
t t2  

(d2 ~ l d k ' )  

Electron near the top of the band has negative effective mass which means that 
electron behaves like a positively charged particle (called hole). 

For a completely filled band, the effective number of free electrons is zero and 
when the band is half-filled, maximum number of effectively free electrons are 
available for electric conduction. This conclusion of the band theory enables us to 
differentiate metals from insulators and semiconductors. 

According to band theory, metals have partially filled band whereas insulators 
and semiconductors have completely filled conduction and completely empty 
valence bands separated from each other by an energy gap, E,. However, 
energy gap in semiconductors is much less than that of an insulator; therefore, as 
temperature is raised from absolute zero, electrical conduction may take place in 
semiconductors. 



Electronic Properties The value of wave number for which discontinuities appear in the E vs, k curve of 
an electron represent the Brillouin zone boundaries because the corresponding 
energy values are not allowed to electrons. Therefore, it is possible to construct 
Brillouin zone patterns of solids on the basis of their E vs. k curves. Since first 
Brillouin zone is a unit cell of the crystal in reciprocal space, we can determine 
the crystal structure of the solid on the basis of its Brillouin zone pattern. 

Hall effect experiment is used for determining the concentration and sign of 
carriers in metals as well as in semiconductors. Positive value of Hall coefficient 
observed for some metals cannot be explained on the basis of free-electron theory. 
Band theory, however, do account for positive Hall co-efficient of metals in 
terms of negative effective mass of electrons at the top of the band. This 
experiment also enables us to test the predictions of free electron theory regarding 
concentration of charge carriers in metals. The Hall co-efficient is given by 

Y 1 R, =7=- - 
J BZ 

10.6 TERMINAL QUESTIONS Spend 35 min. 

0 

1. A 2-D square lattice has side 2.5 A . What will be the momentum of an electron 
whose wave terminates at the boundary of first Brillouin zone? Also calculate 
energy of the electron. 

2. When 90 mA current is passed through a sodium specimen under the magnetic 
field 2.0 Weber m-2, the Hall voltage is 0.09 mV. The width-of the specimen is 
0.04 mm. Calculate the carrier concentration. 

0 

3. For a 2-D square lattice of side 0.02 A ,  calculate the momentum of electron 
corresponding to the boundary of the first Brillouin zone. 

10.7 SOLUTIONS AND ANSWERS 

Self-Assessment Questions (SAQs) 

1 .  a) In a crystalline solid, atoms are arranged along a periodic lattice. In those 
solids in which the valence electrons are loosely bound to the constituent 
atoms, such as metals, the valence electrons becomepee leaving positively 
charged ions at lattice sites. The free (conduction) electrons experience 
potential field due to the positively charged ions. Since ions are arranged 
along a periodic lattice, the potential field due to them is also periodic. 

b) Since an electron experience a periodic potential in a crystalline solid, the 
wave function describing such an electron must have the form of Bloch 
function given by 

where uk (x) = uk (X + a), a being the lattice constant. 



2. Values of i -sin aa + cos aa for different values of aa and P = 3n/2 is 
' 'i 
aa 

tabulated below: 

-sin aa + cos aa 

5.7 1 

3 x/4 lSt allowed band (width = 0 . 5 ~ )  

Band Theory of Solids 

3.  Refer to the answer of SAQ 2 which gives -sin aa + cos aa ( :a 
values of aa for fixed value of P (= 3~12). Note that these values have been 
.tabulated at the intervals of ni4 in aa. The second allowed band covers the range 
3 n: 
- 5 aa 5 2n and the width of the band is 0.5 IT. However, the third allowed 

19n 
band covers the range - I a a  5 3n giving width of the band equal to 0.66 n. 

8 
You can show that the allowed band width will further increase for increasing 
values of aa. Thus, as energy of electron increases, allowed energy band width 

m 

From Eq. (10.26) 

From Eq. (10.30), effective mass of an electron is 
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5. We know that discontinuities in dispersion curve appear at (Eq. (10.20)) 

2x ' 

For second Brillouin zone, we must take n = 52. So, k = +_ - . For a 2-D squ~  
a 

lattice, this condition transforms to 

2 2 with n, + n2 = 2. 

I Following combinations of values of n, and n2 will satisfy above condition: 

2 x 
nl = + 1, n2 = - 1 which gives k, - ky = - 

I 
a 

2n 
n , = - 1 ,  n 2 = + 1  whichgives-kx+ky=- 

a 

L I L  

nl = -  1, n2 =-  1 which gives -k,- ky= - 

I 
a 

These are equations of straight lines and taking k, and k, as axes, we get the 
following figure for the second Brillouin zone: 

I Fig.lO.12: Second Brillouin zone (shown by shaded regions) of a 2-D square lattice 



Terminal Questions (TQs) Band Theory of Solids 

1 .  You know that the boundaries of first Brillouin zone of a square lattice is given by 
(Eq. (10.20)) 

nx k=+- 
a 

where 'a' is the lattice constant. We have, 

0 

a = 2.5 A = 2.5 x 10-''m. 

Momentum of an electron at the boundary of first Brillouin zone can be written as 
(taking n = 1 in above expression for the wave number), 

n 
p = h k = h . - = ( 1 . 0 5 ~ 1 0 - ~ ~ ~ s ) x  3.14 

a 2.5 x 10-'Om 

= 1 . 3 8 ' ~  kg.ms7] 

Corresponding value of the energy of electron is 

p2 (1.38 x kg.ms-')2 E=-= = 1.04 x 10-l8 J = 10.4 eV. 
2m 2 ~ ( 9 . 1 x 1 0 - ~ ' k ~ )  

2. Hall co-efficient, RH is defined as the Hall electric field per unit current density 
per unit magnetic field. So, if VH is the Hall voltage and b and dare  the lengths of 
the edges of a parallelepiped parallel toy- and z-axes respectively (refer to 
Fig. 10.1 I), we can write 

VH E, =- 
b 

and 

I 
j =A 

bd 

where I, is current. 

So, we can write Hall co-efficient as 

v, 
V H ~  RH =4=- 

Ix I ,  Bz 

ii Bz 

We have, 

VH = 0.09 mV = 0.09 x V; I, = 90 mA = 90 x ~ o - ~ A ;  

d = 0.04 mm = 0.04 x m; and B, = 2 Wb m-2 
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But, from Eq. (1  0.40), the magnitude of Hall co-efficient is given by 

n: n: 
3. We know that the first Brillouin zone lies in the range - - < k < -. So, we have 

a a 
iL 

to calculate the momentum of an electron whose wave number, k = + -. And 
a 

momentum of an electron is given by 



and 

The solution of these differential equations was suggested by Bloch as under, 

y(x) = uk ( x )  e'" (A.3) 
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Thus, we have 

and 

Thus, we can write the general solution as 

where A and B are constants. 

Similarly, substituting the solution u2 = ePX in Eq. (A.6) and solving as above, we 
can write the general solution as 

- C e(P-ik)x + D e- ( b i k ) x  
'42 - ('4.8) 

where C and D are constants. 

To obtain the values of constants A, B, C and D, we apply the following boundary 
conditions on Eqs. (A.7) and (A.8): 

iii) 

Applying (i) on Eqs. (A.7) and (A.8), we get 

(A+B) = (C+D) (A.9) 

Applying (ii) on Eqs. (A.7) and (A.8), we get 

I i (a  - k)A - i (a  + k)B = (P - ik)C - (P + ik)D (A. 10) 

Applying (iii) on Eqs. (A.7) and (A.8), we get 

A el(a-k)a + B -4a+k)a - - e-(P-ik)b + D (P+lk)b (A.l l)  

Applying (iv) on Eqs. (A.7) and (A.8), we get 

A i(a - k)e'(a-k)a - B i(a + k)e-(a+k)a = C (p - ik)e-(p-'k)b - D (p + i k ) e ( P + ~ ~ ) ~  



Eqs. (A.9) to (A.12) will have non-vanishing solutions if and only if the determinant 
of the coefficients of A,  B, C and D vanishes. That is, 

1 1 1 1 

i ( a  - k )  - i (a + k )  (P - ik) - ( P  + ik) 
e i (a-k)a  -;(a+k)a -(P-ik)b (P+;k)b = 0 e e 

( A .  13) 
To solve this determinant, let us write it as 

Expanding and rearranging terms we get 

( e - g )  ( f  - h )  ( b d + a c ) + ( g -  f )  ( e - h )  ( b c + a d )  

Substituting the values of a, b, c ,  d ,  e ,f;  g and h from Eq. ( A .  13), in Eq. ( A .  14) and 
simplifLing we get, 

Dividing throughout by 2, we get 

Now, using the following relations I 
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p2 - a 2  
2 sin aa sinh pb = 2 cos k (a  + b )  - 2 cos aa cosh pb 

2aP 
or 

2 
p 2 - a  s i n h ~ b s i n a a + c o s h ~ b c o s a a = c o s k ( a + b )  (A.15) 

2aB 

This is the desired relation expressed as Eq. (10.13).  




